If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-28x-12=0
a = 49; b = -28; c = -12;
Δ = b2-4ac
Δ = -282-4·49·(-12)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-56}{2*49}=\frac{-28}{98} =-2/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+56}{2*49}=\frac{84}{98} =6/7 $
| 6x+33=3(x+8) | | 2=2x+3(x+4) | | 2w+4/3=w+2/3-2 | | 5x-7-3x=7+x | | (5x^2)-24x-36=0 | | 4u+3(u-5)=34 | | 2(2a-1/2)=3(a+2/3) | | 2(w+2)-8w=28 | | -3(2x-4)+2(2x-4)-x=-17 | | -22=-7v+5(v-8) | | y=10^(-8*0.5+7) | | 7x+1/7=x/8+8 | | x2+9x+18=0 | | y=10^-8(0.5)+7 | | 103=218-v | | 31=-59-5x | | 3+4+4*15=n | | 2x+1/2=x/7+7 | | 61=-y+174 | | Y=0.6x+7 | | 28-x=237 | | 5(n+6)-19=61 | | 1+3s/5=7 | | -18=4=2x | | 58=255-y | | (a/2)-(a/8)=5 | | 14(v+1)-2v-4=(3v+3)-16 | | a/2-a/8=5 | | 4y(2.5y)=0 | | 4.9t^2-450.53t+2100=0 | | -6x-4=-34 | | 4.9t^2-282.84t+1800=0 |